Random soups, carpets and fractal dimensions

نویسندگان

  • Serban Nacu
  • Wendelin Werner
چکیده

We study some properties of a class of random connected planar fractal sets induced by a Poissonian scale-invariant and translation-invariant point process. Using the second-moment method, we show that their Hausdorff dimensions are deterministic and equal to their expectation dimension. We also estimate their low-intensity limiting behavior. This applies in particular to the “conformal loop ensembles” defined via Poissonian clouds of Brownian loops for which the expectation dimension has been computed by Schramm, Sheffield and Wilson. MSC Classification: 28A80, 82B43, 28A78

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change in order of phase transitions on fractal lattices

We reexamine a population model which exhibits a continuous absorbing phase transition belonging to directed percolation in 1D and a first-order transition in 2D and above. Studying the model on Sierpinski Carpets of varying fractal dimensions, we examine at what fractal dimension 1 ≤ d f ≤ 2, the change in order occurs. As well as commenting on the order of the transitions, we produce estimate...

متن کامل

Critical exponents for Ising-like systems on Sierpinski carpets

2014 The critical properties of Ising models on various fractal lattices of the Sierpinski carpet type are studied using numerical simulations. We observe scaling and measure the exponents 03B3 and 03BD which are then compared to the values which have been recently extrapolated from the Wilson-Fisher 03B5-expansion in non integer dimensions. It appears that in the general case an effective dime...

متن کامل

Time evolution of quantum fractals

We propose a general construction of wave functions of arbitrary prescribed fractal dimension, for a wide class of quantum problems, including the infinite potential well, harmonic oscillator, linear potential, and free particle. The box-counting dimension of the probability density P(t)(x) = |Psi(x,t)|(2) is shown not to change during the time evolution. We prove a universal relation D(t) = 1+...

متن کامل

A trace theorem for Dirichlet forms on fractals

We consider a trace theorem for self-similar Dirichlet forms on self-similar sets to self-similar subsets. In particular, we characterize the trace of the domains of Dirichlet forms on the Sierpinski gaskets and the Sierpinski carpets to their boundaries, where boundaries mean the triangles and rectangles which confine gaskets and carpets. As an application, we construct diffusion processes on ...

متن کامل

Pedotransfer functions for estimating soil moisture content using fractal parameters in Ardabil province

Extended abstract 1- Introduction Soil moisture curve is an important characteristic of soil and its measurement is necessary for determining soil available water content for plant, evapotranspiration and irrigation planning. Direct measurements of soil moisture coefficients are time-consuming and costly. But it is possible to estimate these characteristics from readily available soil propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2011